ON THE ISOTROPIC GROUP OF A HOMOGENEOUS POLYNOMIAL

BY

SIU-MING HO(1)

ABSTRACT. Let G be the linear group leaving a homogeneous polynomial of degree k fixed. The author shows that either the polynomial in fewer than the assigned number of variables or that the (k-1)st prolongation of G is 0. The author also shows that this result is optimal.

Let $P^k[X_1, \dots, X_n]$ be the space of homogeneous polynomials in X_1, \dots, X_n of degree k. Note that the linear group $\operatorname{GL}(n)$ acts on $P^k[X_1, \dots, X_n]$. If $A = (a_i^j) \in \operatorname{GL}(n)$ and $f(X_1, \dots, X_n) \in P^k[X_1, \dots, X_n]$, we denote the action of A on f by Af where

(1)
$$Af(X_1, \dots, X_n) = f\left(\sum_{j=1}^n a_1^j X_j, \dots, \sum_{j=1}^n a_n^j X_j\right).$$

The Lie algebra gl(n) of GL(n) is the set of $n \times n$ matrices which also acts on $P^k[X_1, \dots, X_n]$. If $a = (a_i^j) \in gl(n), f \in P^k[X_1, \dots, X_n]$ then

(2)
$$a \cdot f(X_1, \dots, X_n) = \sum_{i=1}^n \frac{\partial f}{\partial X_i} a_i^j X_j.$$

This is obtained by writing $A = \exp(ta)$ and differentiating (1) with respect to t. Let G be the Lie sugbroup of GL(n) which leaves $f \in P^k[X_1, \dots, X_n]$ invariant, and g the Lie algebra of G. By formula (2) we have the following.

Lemma. The Lie algebra g of G consists of those matrices (a_i^j) for which $\sum_{i,j}^n \partial f/\partial X_i a_i^j X_j = 0$.

For each element $a=(a_i^j)\in \operatorname{gl}(n)$ we can think of (A^1,\cdots,A^n) as an n-tuple of homogeneous polynomials of first order, where $A^i=\sum_{j=1}^n a_i^j X_j$. From now on we identify $\operatorname{gl}(n)$ with the space of n-tuple of homogeneous polynomials of first order. So we can also think of the subspace g of $\operatorname{gl}(n)$ as a subspace of the above space.

Received by the editors November 3, 1972.

AMS (MOS) subject classifications (1970). Primary 53C10.

Key words and phrases. G-structure, prolongation.

⁽¹⁾ This research was partially supported by a grant from NSF, P22927X1.

496 SIU-MING HO

For any Lie subalgebra g (see [3]) of gl(n) we define the first prolongation $g^{(1)}$ of g as the set of all n-tuples. $(A^1(X), \dots, A^n(X))$, where A^i is a homogeneous polynomial of degree two in X_1, \dots, X_n and all the first derivatives, $i=1,\dots,n$, $(\partial A^1/\partial X_i,\dots,\partial A^n/\partial X_i)$ lie in g. Similarly we define the kth prolongation $g^{(k)}$ of g as the set of all n-tuples $(A^1(X),\dots,A^n(X))$ where $A^i(X)$ is a homogeneous polynomial of degree k+1 in X_1,\dots,X_n , and all the kth derivatives $(\partial^k A^1/\partial X^\alpha,\dots,\partial^k A^n/\partial X^\alpha)$, $|\alpha|=k$, lie in g.

Definition. The algebra g is of finite type if $g^{(k)} = 0$ for some k (and, therefore for all large k) G is said to be of type k if $g^{(k-1)} \neq 0$ and $g^{(k)} = 0$.

Definition. f(X) is a nonsingular homogeneous polynomial if f cannot be written as a polynomial in fewer than n variables.

We have the following result:

Theorem. If $f \in P^{k}[X_{1}, \dots, X_{m}]$ and nonsingular then $g^{(k-1)} = 0$.

Proof. If $(A^1(X), \dots, A^n(X)) \in G^{(k-1)}$, by definition

$$(\partial^{k-1}A^1/\partial X^{\alpha}, \dots, \partial^{k-1}A^n/\partial X^{\alpha}), \quad |\alpha| = k-1, \in g.$$

then

$$\sum_{i=1}^{\infty} \frac{\partial f}{\partial X_i} \frac{\partial^{k-1}}{\partial X^{\alpha}} A^i = 0 \quad \text{for all } |\alpha| = k-1.$$

By repeated application of Euler's identity for homogeneous functions we can rewrite this as

$$\sum_{i=1}^{n} \frac{\partial^{k-1}}{\partial X^{\alpha}} \left(\frac{\partial f}{\partial X_{i}} \right) A^{i} = 0 \quad \text{for all } |\alpha| = k-1.$$

However $\partial^{k-1}/\partial X^{\alpha}$ $(\partial f/\partial X_i)$ are constants, so choosing any X_0 such that the $A^i(X_0)$ are not all zero, and setting $b_i = A^i(X_0)$ we get

$$\sum \frac{\partial^{k-1}}{\partial X^{\alpha}} \left(\frac{\partial f}{\partial X_i} \right) b_i = 0 \quad \text{for all } |\alpha| = k-1.$$

This implies $\sum b_i \partial f/\partial X_i = 0$, in other words f can be written as a polynomial in n-1 variables which contradicts the hypotheses. Q.E.D.

In what follows we construct some examples which show that the above theorem is the best possible result we can get. Let

$$f(X_1, X_2, X_3, X_4, X_5) = \begin{vmatrix} X_3 & X_4 & X_5 \\ X_1 & X_2 & 0 \\ 0 & X_1 & X_2 \end{vmatrix} = X_3 X_2^2 - X_4 X_1 X_2 + X_5 X_1^2.$$

It is easily seen that f cannot be written as a polynomial fewer that 5 variables. Let $(A^1, A^2, A^3, A^4, A^5)$ be a 5-tuple of homogeneous polynomials of second degree where $A^1 = 0$, $A^2 = 0$, $A^3 = X_1^2$, $A^4 = 2X_1X_2$, $A^5 = X_2^2$. Then

$$\sum_{i=1}^{n} \frac{\partial f}{\partial X_i} \frac{\partial A^i}{\partial X_j} = 0 \quad \text{for all } j = 1, 2, 3, 4, 5.$$

This implies $(A^1, A^2, A^3, A^4, A^5) \in g^{(1)}$, so $g^{(1)}$ is nontrivial. Let $f \in P^{k-2}[X_1, X_2, \dots, X_k]$ be defined as follows:

$$A^{1} = 0, A^{4} = X_{1}^{k-4}X_{2}, \\ A^{2} = 0, A^{i} = X_{1}^{k-i}X_{2}^{i-3}, \\ A^{3} = X_{1}^{k-3}, A^{k} = X_{2}^{k-3};$$

$$f(X_1, X_2, \dots, X_k) = \begin{vmatrix} \frac{\partial^{k-4} A^3}{\partial X_1^{k-4}} & \frac{\partial^{k-4} A^4}{\partial A_1^{k-4}} & \cdots & \frac{\partial^{k-4} A^k}{\partial X_1^{k-4}} \\ \frac{\partial^{k-4} A^3}{\partial X_1^{k-5} \partial X_2} & \frac{\partial^{k-4} A^4}{\partial X_1^{k-5} \partial X_2} & \cdots & \frac{\partial^{k-4} A^k}{\partial X_1^{k-5} \partial X_2} \\ \frac{\partial^{k-4} A^3}{\partial X_2^{k-4}} & \frac{\partial^{k-4} A^4}{\partial X_2^{k-4}} & \cdots & \frac{\partial^{k-4} A^k}{\partial X_2^{k-4}} \end{vmatrix}$$

It is easily seen that f is nonsingular and also

$$\sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}} \frac{\partial^{k-4} A^{i}}{\partial X^{\alpha}} = 0 \quad \text{for all } |\alpha| = k-4$$

so we have g^{k-4} of f is nontrivial.

Note that the first example of $g^{(1)} \neq 0$ occurs in dimension 5. Using a result of Gordan-Noether (see [1]) one can show that, for dimensions ≤ 4 , $g^{(1)} = 0$ and, for dimension 5, $g^{(2)} = 0$.

The result above has interesting consequences for the problem of when a partial differential operator can be transformed to a constant coefficient operator see [2].

BIBLIOGRAPHY

- 1. P. Gordan and M. Noether, Ueber die algebraischen Formen deren Hesse'che Determinante identisch verschwindet, Math. Ann. 10 (1876), 547-568.
- 2. V. Guillemin and I. M. Singer, Differential equations and G-structures, U. S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 34-36. MR 35 #4840.
- 3. I. M. Singer and S. Sternberg, On the infinite groups of Lie and Cartan. I, The transitive groups, J. Analyse Math. 15 (1965), 1-114. MR 36 #911.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139